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ABSTRACT 

Saliva is responsible for the formation of the acquired enamel pellicle (AEP), a protein 

integument formed as a result of selective adsorption of salivary proteins to the enamel 

surface. The AEP demonstrates an important role for modulating dental erosion as a 

result of its physical properties, along with its salivary and exogenous protein 

composition (Chapter 2). In addition, individual proteins that comprise the AEP have 

important physiological functions. Histatin 5 (H5) has potent antifungal effect against C. 

albicans, the yeast responsible for the initiation of oral candidiasis. We designed an in 

vitro model and found, for the first time, that H5 adhered in the form of pellicle retains its 

antifungal activity on C. albicans (Chapter 3). As a pellicle precursor protein, H5 

demonstrates high affinity for hydroxyapatite, the primary mineral component of enamel. 

We used atomic force microscopy (AFM) to determine adhesion forces between H5 and 

the hydroxyapatite surface to be stronger compared to our protein control, albumin. This 

knowledge can be applied in the design of therapeutic proteins, and the methodology that 

we developed can be used for measuring adhesion forces between various other proteins 

and substrates of interest (Chapter 4). Finally, with the development of proteomics 

instruments, researchers have identified some protein biomarkers, hidden within salivary 

fluids. These can be used for diagnostic dentistry, in a clinical setting to identify patients’ 

susceptibility of developing oral diseases. In addition, the delivery proteins with 

antimicrobial properties via toothpastes or oral rinses can have tremendous therapeutic 

potential for a multitude of oral diseases (Chapter 5).  

Keywords:  saliva, acquired enamel pellicle, salivary proteins, histatin 5, albumin, dental 
erosion, atomic force microscopy, adhesion forces, C. albicans, oral candidiasis, salivary 
diagnostics, proteomics 
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CHAPTER 1  

1.1 Introduction  
The human body contains a wide array of fluids that circulate throughout the body and 

have important roles in maintaining the overall health of the individual. Saliva is a very 

important fluid that continually bathes the oral cavity. Saliva consists of secretions from 

the salivary glands, including parotid, submandibular, and sublingual glands, along with 

hundreds of minor salivary glands (Dawes, 2004). In addition saliva contains several non-

salivary components, which include gingival crevicular fluid, serum and blood 

derivatives, bronchial and nasal secretions, microorganisms, food debris, and 

desquamated epithelial linings (Kaufman and Lamster, 2002).  

 In terms of physiological functions, saliva provides tissue lubrication, aids in 

mastication and speech, protects enamel from demineralization, aids in remineralization, 

plays an important role in bacterial and viral clearance; ultimately maintaining the 

integrity of the oral cavity (Mandel, 1987). In addition, saliva is responsible for forming 

the acquired enamel pellicle (AEP), an organic protein layer formed in vivo as a result of 

selective adsorption of 130 salivary proteins to the enamel surface (Dawes, 1963; 

Siqueira et al., 2007). Pellicle precursor proteins play an important role in AEP formation 

since they demonstrate a high affinity for hydroxyapatite (HA), the inorganic mineral 

component of teeth. Pellicle precursor proteins include statherin (Hay, 1973), prolin-rich 

proteins (Oppenheim et al., 1971), cystatins (Larkin et al., 1991), and histatins (Hay, 

1975; Oppenheim et al., 1986). 

Pellicle formation is a highly selective process since only a fraction of proteins in 

human saliva (130/2290 proteins) are present within the in vivo AEP (Siqueira et al., 

2007; Siqueira and Dawes, 2011). Within seconds of enamel exposure to saliva, the 

initial phase of pellicle formation occurs (Hannig, 1999; Smith et al., 2000), during which 

precursor proteins adhere to the surface, forming a 10–20 nm-thick protein layer (Hannig 

and Joiner, 2006). The second stage of pellicle formation (30-90 min) involves the 

adsorption of protein aggregates, resulting in an increase of pellicle thickness to 100-

1000 nm, and a plateau in pellicle formation (Skjorland et al., 1995). 

The AEP demonstrates anti-erosive properties within the oral cavity due to its 

physical structure and protein composition. As a result, AEP possesses tremendous 
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therapeutic potential for preventing dental erosion, a multifactorial condition that can 

result in the loss of tooth structure and function, potentially increasing tooth sensitivity 

(Imfeld, 1996). The progression of dental erosion is caused as a result of enamel exposure 

to acids from non-bacterial sources (Imfeld, 1996). These erosive challenges are 

counteracted by the anti-erosive properties of the AEP. The protective nature of AEP is 

affected by pellicle thickness (Amaechi et al., 1999; Milosevic et al., 1994 Bartlett et al., 

1996), maturation time (Nieuw Amerongn et al., 1987; Amaechi et al., 1999; Hannig et 

al., 2003) and site of development (Carlen et al., 1998). The pellicle contains naturally 

secreted salivary proteins embedded within its structure that demonstrate anti-erosive 

properties. However, rather than individual proteins, protein-protein interactions may 

play a fundamental role in the protective nature of the AEP (Cheaib and Lussi, 2011). In 

addition, dietary (Herod, 1991) and synthetic proteins (Kosoric et al., 2007) can modify 

the pellicle, enhancing its protective efficiency against dental erosion. In addition, the 

salivary composition of the AEP and its corresponding protein-profile may be employed 

as a diagnostic tool, since it likely contains salivary biomarkers for oral diseases that 

initiate at the enamel surface, including dental erosion. By modifying the composition 

and structure of the AEP, this protein integument has the potential to be used as a target-

specific treatment option for dental erosion (Vukosavljevic et al., 2011).  

 Salivary proteins that are members of the AEP can assume an important role in 

preventing the colonization of pathogenic microorganisms within the oral cavity. For 

instance, histatins demonstrate potent antifungal effects against C. albicans, a pathogenic 

yeast responsible for initiating oral candidiasis. Histatins are cationic, histidine-rich 

salivary proteins (Oppenheim et al., 1986). The main members of the histatin family 

include histatin 1, 3, and 5, consisting of 38, 32, and 24 amino acids, respectively 

(Oppenheim et al., 1988). At concentrations found in salivary secretions of healthy 

individuals (15-30 μM), the carboxyl-terminal of histatin 5 (H5) demonstrates the most 

potent fungistatic and fungicidal affects, followed by histatin 3, and histatin 1 

(Oppenheim et al., 1986; Xu et al., 1991). The antimicrobial effect of H5 is likely due to 

its composition of multiple basic amino acid residues (arginine and lysine), which 

enables it to interact with the negatively charged lipid bilayer. It has been suggested that 

the basic character of histatin 5 disrupts the cell membrane by forming membrane pores, 
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thus inducing membrane permeability (increased loss of K+ from cell) and resulting in 

cell death (Pollock et al., 1984). In addition, histatin 5 inhibits the transformation of C. 

albicans to its virulent, filamentous form (Xu et al., 1991), therefore preventing invasion 

of mucosal membranes.  

Although fluid-phase H5 demonstrates antifungal effect on C. albicans in 

planktonic phase (Gyurko et al., 2000; Pusateri et al., 2009), and on C. albicans biofilms 

(Konopka et al., 2010), its inhibitory effect when adhered to hydroxyapatite and 

polymethacrylate (PMMA) surfaces, resembling conditions of the in vivo pellicle, 

remains unexplored. Therefore, the primary objective of the in vitro study described in 

Chapter 3 was to design a model system to investigate whether surface-adhered H5 

inhibits the colonization of C. albicans on HA and/or PMMA. The limited number of 

treatments for oral candidiasis resulted in the emergence of azole-resistant Candida 

albicans strains, thus enforcing the need for novel antifungal treatments. 

Atomic force microscopy (AFM) has been previously used to study the adsorption 

dynamics of proteins on surfaces including mica and polydimethylsiloxane (PDMS) 

(Dufrene, 2003; Toworfe et al., 2004; Toscano and Santore, 2006). Although histatins are 

among the pellicle precursor proteins possessing a high affinity to HA (Hay, 1975; 

Oppenheim et al., 1986; Oppenheim et al., 1988), the strength of this affinity has not yet 

been established. Understanding the adhesive properties of proteins with high affinity for 

HA (i.e., adhesion forces), would provide fundamental knowledge that can be used in the 

design of various therapeutic treatments, involving natural or synthetic proteins/peptides. 

Since adhesion forces can provide a method to determine the affinity of a protein or 

peptide to the surface in direct contact with the substrate. The experiment that 

investigates the adhesion force between H5 and HA is described in Chapter 4.  

In addition to containing proteins that possess anti-erosive and antimicrobial 

properties, saliva is an important body fluid to be explored for health and disease 

surveillance. This is primarily because saliva contains gingival crevicular fluid, which in 

turn contains a variety of hormones, antibodies, enzymes, cytokines, and antimicrobial 

constituents  (Zelles et al, 1995). Therefore, the gingival crevicular fluid found within 

whole saliva allows it to contain biomarkers from the body’s circulation, thus making 

saliva an attractive diagnostic fluid for monitoring disease biomarkers that are typically 
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found in serum (Oppenheim, 2007; Loo et al., 2010). Therefore, saliva contains important 

information about the physiological state of the body. Saliva can be used for monitoring 

oral health, including periodontal diseases  (Socransky et al, 2000) and to assess caries 

risk (Baughan et al, 2000), as well as overall systemic health. For instance, saliva has 

been found to contain biomarkers for cancer  (Zhang et al, 2010), bacterial (Lendenmann 

et al, 2000) and viral (Pozo and Tenorio, 1999) diseases. The development of proteomics 

has revolutionized the field of salivary diagnostics because it allows researchers to use 

certain biomarkers to diagnose a disease. The goal in salivary diagnostics is to be able to 

detect changes in the salivary proteome prior to the onset of clinical symptoms of the 

disease. It is important to gain an understanding of how to utilize recent technological 

advances in dental research for predicting, monitoring, and preventing the development 

of oral diseases by investigating the diagnostic and therapeutic role of salivary proteins.  
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CHAPTER 2 
Acquired Enamel Pellicle as a Modulator for Dental Erosion 

 

2.1 Introduction 
Dental erosion is described as the loss of dental hard tissue due to dissolution and 

chemical etching by acids of nonbacterial source (Imfeld, 1996). In recent years, the 

prevalence of dental erosion has significantly increased, particularly in developing 

countries (Truin et al., 2005), affecting anywhere between 4-82% of adults and 6-50% of 

children (Jaeggi and Lussi, 2006). The pathophysiology of dental erosion is modulated by 

multiple factors including host behaviour, salivary flow rate, and the microenvironment 

surrounding the tooth. As a result of the multifactorial dependence, high prevalence, and 

potentially rapid and destructive behavior of dental erosion, the development of effective 

management and preventative approaches to avoid the dissolution of dental enamel is 

becoming increasingly important. The most common approach to treat and prevent 

erosive wear is the use of fluoride-containing dental products (Lussi, 2009; Lussi and 

Jaeggi, 2006). However, low-to-moderate fluoride concentrations are not able to 

completely prevent the progression of dental erosion (Larsen and Richards, 2002), and 

there has been concerns with the use of fluoride in terms of its toxicological effects (ten 

Cate, 1999).  

Alternatively, human saliva possesses several natural biological properties that 

protect tooth surfaces against demineralization (Amaechi and Higham, 2001). For 

instance, saliva’s bicarbonate content supplies a constant source of ions that interact with 

the tooth surface, acting as a buffer that effectively resists changes in pH, thus 

neutralizing acids that are responsible for erosion (Lendenmann et al., 2000). Along with 

buffering capacity, salivary clearance of erosive agents and its remineralizing capacity 

also contribute to the anti-erosive properties of saliva (Zero, 1996; Sreebny, 2000; 

Amaechi and Higham, 2001). The protective function of saliva can also be attributed to 

the formation of the acquired enamel pellicle (AEP), a protein integument formed in vivo 

as a result of selective adsorption of salivary proteins to the enamel surface in the oral 

cavity (Dawes et al., 1963). Within seconds of enamel exposure to saliva, the initial phase 

of pellicle formation occurs (Hannig and Balz, 1999), during which precursor proteins 
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(i.e., statherin, histatins, acidic proline-rich proteins) selectively adhere to the surface, 

forming a protein layer 10-20 nm thick (Hannig and Joiner, 2006). The rapid increase in 

pellicle thickness (100-1000 nm) during the second stage of pellicle formation and the 

presence of adsorbed knotted, globular-like structures in vivo suggests that protein 

aggregates, rather than individual proteins, are responsible for subsequent pellicle 

development (Hannig et al., 2001).  

In this chapter, we discuss the role of AEP physical properties, and the influence of 

salivary, exogenous, and synthetic proteins, on the protective nature of the AEP 

(summarized in Figure 1). We also consider the pellicle as a strong candidate as a future 

proteomics-based diagnostic tool, along with its potential as a target-specific therapeutic 

treatment option.  

 

2.2 Anti-erosive properties of the pellicle  
The AEP protects the tooth from enamel demineralization by acting as a natural diffusion 

barrier inhibiting the direct contact between the tooth surfaces and dietary acids (Siqueira 

et al., 2007b). As a result, there is a decrease in diffusion rates of phosphate and calcium 

ions into the surrounding fluid following exposure to acidic conditions, thus protecting 

against tooth demineralization (Zahradnik et al., 1976; Hannig and Balz, 1999; Siqueira 

et al., 2010). More specifically, the AEP significantly inhibits the surface microhardness 

loss and surface roughness increase on bovine enamel that occurs as a result of exposure 

to organic acids (i.e., citric acid; Nekrashevych and Stosser, 2003).  

The protective efficiency of AEP against erosion is dependent on its physical 

properties, including pellicle thickness and maturation time. The thickness of the AEP 

varies widely throughout the oral cavity, with a thicker pellicle exhibiting stronger 

protective effects against erosion (Amaechi et al., 1999). The AEP is thickest on the 

lingual surfaces of the lower teeth, since this region is constantly bathed in saliva 

excreted from submandibular and sublingual glands (Carlen et al., 1998). Meanwhile, the 

palatal surfaces of upper teeth are exposed to shear forces from the rubbing action of the 

tongue and these areas are also poorly bathed in saliva, resulting in a thin pellicle        
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Figure 2.1 The ability of the AEP to reduce/inhibit dental erosion effectively depends on 
a wide-range of properties within the oral cavity. The schematic figure illustrates the 
importance of saliva, AEP physical features, AEP composition, and substrate 
characteristics when considering the anti-erosive property of the AEP.   
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layer (Amaechi et al., 1999). Therefore, the variation of pellicle thickness within dental 

arches contributes to site-specificity and severity of erosion, with palatal surfaces as 

frequent sites of erosion in children (Milosevic et al., 1994) and adults (Bartlett et al., 

1996).  

It has been suggested that only mature, several day-old pellicles are capable of 

preventing enamel demineralization (Zahradnik et al., 1978). However, when 24-hour 

and 7-day-old pellicles were compared, there was no significant difference in the 

protective ability of the pellicles (Hannig and Balz, 1999). Studies have demonstrated 

that pellicles developed over one hour offered maximum protection against 

demineralization, with no subsequent decrease in erosion when using longer maturation 

times (Nieuw Amerongn et al., 1987; Amaechi et al., 1999; Hannig et al., 2003). Hannig 

et al. (2004) found no difference in the protective effect of a pellicle formed after three 

minutes compared to a pellicle formed after two hours. This can be attributed to the fact 

that pellicle formation, in terms of protein adsorption, begins within seconds of exposure 

of salivary proteins to the oral cavity (Hannig et al., 2004), producing an electron dense 

basal pellicle layer after one minute (Ericson et al., 1982). Since subsequent pellicle 

layers are much less electron dense and are much more loosely arranged compared to the 

initial basal pellicle layer (Hannig, 1999), they offer little additional protection against 

acidic attack (Hannig and Balz, 1999; Hannig et al., 2003; Hannig et al., 2004). 

 

2.3 Anti-erosive effect of salivary pellicle proteins 
Along with pellicle thickness and maturation time, the incorporation of single host 

salivary proteins into the pellicle layer can significantly affect AEP function, including its 

ability to protect against dental erosion and calcium phosphate crystallization (Dickinson 

and Mann, 2005). Salivary mucins are high-molecular-weight glycoproteins, secreted by 

the sub-mandibular and sublingual glands, comprising a key component of the pellicle 

and 7-26% of total salivary proteins (Slomiany et al., 1996). At physiological 

concentrations in vitro, mucins adhered to the enamel surface inhibit enamel 

demineralization caused by erosive attack (Nieuw et al., 1987; Kielbassa et al., 2001). In 

addition to mucins, statherin, histatins and acidic proline-rich proteins (PRPs) comprise 

the basal layer of the AEP and control dental erosion by modulating calcium and 
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phosphate concentration within the oral cavity (Hay and Moreno, 1989; Hannig et al., 

2004; Siqueira et al., 2007a). Calcium and phosphate concentrations modulate the 

dissolution and remineralization kinetics of enamel (Gao et al., 1991), since a decrease in 

oral pH requires an increase in phosphate and calcium concentrations in order to maintain 

saturated fluid that surrounds the tooth. Therefore, statherin and PRPs maintain a state of 

saturation of calcium and phosphate in the oral cavity by inhibiting their precipitation at 

oral pH and liberating these ions following acidic attack and during demineralization 

(Hay and Moreno, 1989). For instance, statherin and acidic PRPs maintain elevated 

concentrations of calcium by binding it to form calcium-based salivary layers (Proctor et 

al., 2005) or alternatively micelle-like structures (Rykke et al., 1995).  

 

2.4 The role of dietary proteins on erosion  
Exogenous proteins, obtained through dietary means, can interact with salivary proteins 

within the pellicle to protect the tooth from dental erosion (Barbour et al., 2008). Casein 

is a phosphoprotein found in bovine milk that binds to amorphous calcium phosphate 

(ACP) with its multiple phosphoserine residues (Herod, 1991). Upon binding, small 

casein phosphopeptide (CPP) stabilized ACP clusters become formed that are able to 

inhibit demineralization and possibly enhance remineralization of the tooth (Reynolds, 

1997; Kielbassa et al., 2005). Specifically, CPP-ACP is capable of transporting calcium 

and phosphate to the tooth surface, localizing it in the pellicle (Reynolds, 2009). 

Therefore, with a decrease of pH in the oral cavity, calcium and phosphate ions become 

released, thus inhibiting demineralization by the localized increased amount of mineral 

ions, and promoting remineralization by diffusion down concentration gradients 

(Reynolds, 2009). Subfractions of casein that differ in molecular size and chemical 

characteristics do not show any difference in overall protective ability, thus suggesting 

that multiple mechanisms likely occur enabling casein to exhibit its inhibitory effects on 

erosion (Coultate, 2002). In vitro studies on the effectiveness of CPP-ACP technology for 

promoting remineralization and/or inhibiting demineralization of enamel have shown that 

CPP-ACP can provide significant protection (Cochrane et al., 2008; Lata et al., 2010; 

Manton et al., 2010; Zhang et al., 2011). However, enamel remineralized with CPP-ACP 

may interfere with resin bonding, since it has been found to be more resistant to acids 
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(Iijma et al., 2004). In addition, since CPP-ACP-containing mousse has found to have no 

protective effect on erosive tooth wear (Wegehaupt et al., 2010), its use as a protective 

agent against erosion remains controversial.  

Along with casein, ovalbumin, a protein found in egg white, can also reduce the 

erosion of hydroxyapatite in acidic solutions, in vitro, once adsorbed to the 

hydroxyapatite surface in the form of a pellicle (Hemingway et al., 2008). It is likely that 

both casein and ovalbumin increase the ion-diffusion-restricting properties of the pellicle, 

thus increasing the ability of the pellicle to prevent erosion of the underlying enamel 

(Hemingway et al., 2010).  

In addition, food polymers such as sodium hexametaphosphate, tri-polophosphate, 

and xanthan gum possess anti-erosive properties. For instance, the phosphate groups of 

sodium hexametaphosphate bind to the free calcium sites of the enamel surface. As a 

result, sodium hexametaphosphate incorporated into the pellicle can protect enamel 

against erosive agents (Busscher et al., 2002; Hooper et al., 2007). Similarly, when 

combined, calcium lactate pentahydrate and sodium linear polyphosphate also 

demonstrate anti-erosive effect on enamel and dentin (Scaramucci et al., 2011).  

 

2.5 Anti-erosive synthetic proteins  
In addition to naturally occurring salivary proteins and dietary proteins, synthetic proteins 

have been designed to inhibit dental erosion. StN21 is a synthetic peptide designed to 

have an amino acid sequence identical to the N-terminal of statherin, a salivary pellicle 

protein that inhibits spontaneous and secondary precipitation of enamel (Kosoric et al., 

2007). StN21 is a stable peptide shown to effectively reduce mineral loss caused by 

erosion, thus possessing therapeutic potential (Kosoric et al., 2007).  

Biosynthesis of proteins is a rapidly expanding field with tremendous implications 

for pharmaceutical companies. Synthetically creating proteins allows for precise, site-

specific manipulation of active sites with anti-erosive properties. For example, the 

addition/selective alteration of functional groups with anti-erosive properties could 

ultimately tremendously improve the physiological function of the protein and increase 

its effectiveness as a therapeutic agent for dental erosion.  
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2.6 Effect of protein complexes on erosion 
The formation of heterotypic protein complexes results in the formation of micelle-like 

globules that comprise the mature AEP (Hannig, 1999). Although single proteins have 

been found to protect against in vitro enamel erosion (Kielbassa et al., 2005), it is likely 

that protein-protein interactions play an important role in enabling the pellicle to exert its 

erosion-inhibiting properties. A recent study found that the incorporation of mucin or 

casein alone to the in vitro pellicle did not have any effect on the erosion-inhibiting 

properties of the pellicle. However, experimental treatment of the pellicle with a mixture 

containing casein and mucin resulted in a significant reduction in enamel softening 

(Cheaib and Lussi, 2011). This is likely because protein-protein interactions produce 

additional binding sites, which result in additional interactions with the pellicle (Cheaib 

and Lussi, 2011). It is important to note that mucin also forms heterotypic complexes 

with amylase, PRPs, statherin and histatins (Iontcheva et al., 1997) and these complexes 

could have important impact on the functional role of these proteins in the oral cavity. 

Mucin heterotypic complexes have an important role in the mature pellicle, which as a 

result is more effective at preventing enamel erosion compared to an early pellicle 

coating (Hannig and Joiner, 2006). Therefore, the formation of protein complexes (via 

protein-protein interactions) likely enhances the anti-erosive properties of the AEP.  

Furthermore, when combined with fluoridated dentifrices, the remineralizing 

effect of mucins becomes enhanced, suggesting that mucin/calcium/fluoride interaction 

has a strong effect on remineralization (Meyer-Lueckel, 2004). Since fluorides increase 

calcium diffusion through the mucin film (Alhaique et al., 1986), mucins may promote 

calcium diffusion into the initial lesion, therefore supporting enamel remineralization 

(Meyer-Lueckel et al., 2004; Alhaique et al., 1986). Similar to mucins, casein combined 

with fluoride has an additive effect in decreasing dental erosion compared to casein or 

fluoride alone (Weiss and Bibby, 1966; White et al., 2010). In addition to protein-protein 

interactions increasing the protective function of the AEP, the affinity of proteins to 

hydroxyapatite can be increased as a result of interactions with other proteins (Yin et al., 

2006).  

With the latest protein-analysis techniques (e.g., mass spectrometry), the field of 

proteomics has rapidly progressed throughout the last decade, and continues to expand. 
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We now known that the salivary proteome comprises 2290 proteins (Siqueira and Dawes, 

2011), 130 of which are found in the AEP (Siqueira et al., 2007b). With such a vast array 

of proteins within the dynamic oral cavity, it is very likely that proteins interact with one 

another to synergistically enhance their diverse functions (i.e., maintaining integrity of 

oral cavity, lubricating tissues, inhibiting microbial growth, aiding taste, and facilitating 

food digestion; Siqueira et al., 2007a). Furthermore, there is likely unidentified salivary 

protein interactions that may demonstrate even more potent anti-erosive effects compared 

to those currently known. Therefore, it is imperative to continue to investigate the wide 

range of possible protein-protein interactions to gain further insights into complex 

proteomes that ultimately control oral physiology.  

 

2.7 AEP as a diagnostic tool for dental erosion   
The use of salivary proteins as biomarkers to predict the development of oral diseases has 

tremendous therapeutic potential since salivary protein composition can be indicative of 

pathophysiological state of the patient. For example, it is suggested that patients with 

childhood caries have elevated levels of glycoprotein, and caries-free individuals exhibit 

elevated salivary proline-rich proteins (Bhalla et al., 2010). Meanwhile, patients with 

head and neck squamous cell carcinoma have higher levels of salivary isoforms, soluble 

CD44 (solCD44) compared to cancer-free patients (Franzmann et al., 2007).  

When searching for salivary biomarkers for oral diseases that initiate at the enamel 

surface, such as dental erosion and dental caries, the salivary composition of the AEP and 

its corresponding protein profile is likely more informative compared to saliva (Siqueira 

and Oppenheim, 2009). In order to investigate the protein composition of patients’ AEP, 

and subsequently utilize this information for salivary diagnostics, effective sample 

collection is vital. Sample collection must provide optimal yield and prevent 

contamination by other materials in the oral cavity. Many different methods for accurate 

AEP sampling have been employed; however, differences in sample collection methods 

have produced heterogeneous results for AEP composition (Armstrong, 1966; Eggen et 

al., 1982; Rykke et al., 1990). The mechanic-chemical harvesting technique developed by 

Siqueira et al. 2007b has simplified and improved the reproducibility of AEP in vivo 

collection. As a result, AEP proteins can be directly transferred from wick paper to 
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polyacrylamide stacking gel to perform electrophoretic separation, therefore effectively 

minimizing sample manipulation and potential protein loss. In addition, the use of soaked 

paper in 3% citric acid allows for collection of almost all proteins that comprise the in 

vivo enamel surface (Siqueria et al., 2007b). 

Combining accurate AEP collection techniques (Siqueira et al., 2007b) with 

powerful proteomics analytical tools (i.e., mass spectrometry) will allow researchers to 

more efficiently identify possible changes in AEP protein composition as a result of oral 

disease. This information can be used to identify disease-specific biomarkers, which can 

have a powerful role in oral diagnostics. For example, if dental care professionals can 

effectively utilize the patient’s AEP protein profile to predict the development of dental 

erosion, or even identify a specific stage of erosion, an adequate management plan based 

on preventative and therapeutic measures can be implemented. Instead of treating 

advanced stages of diseases, health care professionals could focus on early identification 

and monitoring prior to their clinical manifestations (Vukosavljevic et al., 2011).  

 

2.8 Future research 
Proteins that possess anti-erosive properties include naturally occurring salivary proteins 

(i.e., mucins, statherin, PRPs), dietary proteins (i.e., casein, ovalbumin), and synthetically 

formulated proteins (i.e., CPP, ACP, StN21). These proteins are able to control oral 

homeostasis in solution (saliva) and when adhered to oral surfaces (pellicle). However, 

proteins incorporated into the pellicle form a microenvironment within the direct vicinity 

of the tooth, thus controlling conditions favorable for demineralization or 

remineralization at the interface between the oral cavity and the tooth surface. In order to 

effectively control demineralization and remineralization processes that occur at this 

interface, understanding how to modify the pellicle composition to favour anti-erosive 

properties (i.e., calcium and phosphate diffusion, fluoride retention) is fundamental. This 

can ultimately be achieved by modifying the in vivo pellicle protein composition by 

incorporating proteins with anti-erosive properties into the pellicle via mouthwashes, 

toothpastes, or even sports drinks. Finally, since the pellicle contains more than 130 

proteins, with 51% of these possessing unknown physiological functions (Siqueira et al., 

2007b), future research is warranted to isolate and identify these unknown proteins by 
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employing the latest proteomics approaches (i.e., mass spectrometry). Performing 

subsequent assays to determine the anti-erosive properties of these proteins is essential in 

order to gain a comprehensive understanding of how to use the natural components of the 

pellicle to develop novel preventative/therapeutic treatments against dental erosion.  
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CHAPTER 3 
 

The effect of histatin 5, adsorbed on PMMA and hydroxyapatite, on Candida 
albicans colonization 

	  
3.1 Introduction 
Oral candidiasis is a severe fungal infection that affects immunocompromised patients, 

those with reduced salivary flow, diabetics, newborns (Cannon et al., 1995) and 

approximately 45.3% of acrylic denture wearers (Figueiral et al., 2007). This infection is 

mainly caused by Candida albicans, one of the most common opportunistic and 

pathogenic microorganisms associated with oral biofilm formation (Reichart et al., 2000). 

Interestingly, C. albicans is a member of the harmless commensal microflora; however, 

upon suppression of the host immune system, it can utilize its morphological plasticity to 

cause mucosal and even systemic infections (Kumamoto and Vinces, 2005). Candida 

albicans is a dimorphic fungus possessing the ability to alternate its morphology from a 

single-celled, coccial (yeast) form to a filamentous, mycelial form (Niimi 

et al., 1999). Although both C. albicans forms can readily colonize a wide range of hard 

oral surfaces, including polymethylmethacrylate (PMMA) resin and hydroxyapatite 

(Chandra et al., 2001; Nikawa et al., 2000), the filamentous form is virulent and essential 

for invasion of host mucous membranes (Bastidas and Heitman, 2009). 

In order to initiate oral infection, adhesion of individual C. albicans cells to oral 

surfaces must occur for successful colonization, because it prevents the cells from being 

removed by salivary flow (Göcke et al., 2002), thus promoting further sequestration and 

growth of pathogenic microbial communities. Salivary proteins control the adhesion of C. 

albicans to PMMA and hydroxyapatite surfaces because they are responsible for the 

development of the acquired pellicle (AP). The AP is an integument formed on oral 

surfaces comprising more than 130 proteins, along with carbohydrates and lipids, as a 

result of a selective adsorption process (Siqueira et al., 2007). Within seconds of oral 

surface exposure to saliva, the initial phase of pellicle formation occurs, during which 

precursor proteins, i.e. histatin 5 (H5), statherin and acidic proline-rich proteins, adhere to 

the surface, forming a 10–20 nm-thick protein layer (Hannig and Joiner, 2006). 
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Controlling the development of oral candidiasis at the pellicle level, by increasing 

the amount of antifungal pellicle proteins, has been suggested as a novel therapeutic 

approach (Vukosavljevic et al., 2011). For instance, H5 is prime candidate for candidiasis 

treatment, since it is a natural salivary protein, capable of exerting inhibitory effects 

against C. albicans, including azole-resistant strains (Tsai et al., 1997). Although 

previous studies have shown that fluid-phase H5 exhibits antifungal effects on planktonic 

phase C. albicans (Gyurko et al., 2000; Pusateri et al., 2009) and on C. albicans biofilms 

(Konopka et al., 2010), the role of H5 when it is adsorbed to oral surfaces (i.e. PMMA 

and hydroxyapatite), as an pellicle protein integument, has not been reported. 

The objective of this study was to investigate the effect of H5 on C. albicans 

colonization when H5 is adsorbed as a monolayer protein integument to PMMA resin or 

hydroxyapatite. It was hypothesized that the H5 protein integument on both PMMA and 

hydroxyapatite will inhibit C. albicans colonization on either surface. 

 

3.2 Materials and Methods 
For this in vitro study, hydroxyapatite discs (Hitemco Medical) and hot water bath 

polymerized acrylic resin discs (QC-20 PMMA, Dentsply Ltd, Weybridge, UK) were 

used as substrates (both measuring 5x2mm). The surfaces of both materials were polished 

by aluminum oxide papers (320, 400 and 600 grit) to standardize surface roughness (SR), 

aiming to mimic the natural enamel and denture surfaces in the oral cavity (Gomes et al., 

2011; Botta et al., 2009). A profilometer (Surface Roughness Tester SJ-210, Mitutoyo; 

Mississauga, ON, Canada) accurate to 0.01 mm, with a total measurement length of 3.2 x 

0.5 mm, was used and showed an average SR 0.31 ± 0.002 mm for PMMA resin and 0.04 

± 0.004 mm for hydroxyapatite discs. The discs were then cleaned by sonication (Digital 

Ultrasonic Cleaner UD100SH, Kwun Wah International Ltd, Wanchai, Hong Kong, 

China) in distilled water three times for 20 min each. The discs were randomly divided 

into a control group (to be coatedwith serum albumin) and an experimental group (to be 

coated with H5). The number of samples (n=5) for each group ensured that the sample 

size provided an adequate power for detecting statistically significant differences 

(p<0.001). With five subjects/group, a mean difference of 50 was detected with 80% 

power, assuming a standard deviation (SD) of 25 and a = 0.05 (two-sided). 
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Protein film formation 

Prior to the C. albicans assay, H5 (protein purity 95%, GenScript, Piscataway, NJ, USA) 

and serum albumin (protein purity>95%, Fisher Scientific, Rochester, NY, USA) were 

individually resuspended in water (pH 7.4, protein concentration of 100 mM), then 

placed into 96-well microlitre plates (Corning Inc., Corning, NY, USA). A total volume 

of 200 ml of either protein solution was added to each well, then the wells were incubated 

for 2 h at 37oC under gentle agitation. The discs were then washed with distilled water to 

remove the non-adsorbed proteins, and subsequently used for the C. albicans adherence 

assay. The amount of H5 or albumin adhered to either PMMA or hydroxyapatite was 

determined by Micro BCA assay (Pierce, Rockford, IL, USA) in order to confirm protein 

adsorption on the PMMA and hydroxyapatite surfaces. The amounts of H5 adhered to 

PMMA and hydroxyapatite were 3.41 and 3.87 mM, respectively, while the amounts of 

albumin adhered to PMMA and hydroxyapatite were 0.19 and 0.17 mM, respectively. 

 

Candida albicans adherence assay 

C. albicans (ATCC 90028) cells were grown on sabouraud dextrose agar (BDTM Difco, 

Franklin Lakes, NJ, USA) at 37oC for 24 h. Ten colonies were inoculated into 50 ml 

YNB broth (BioShopW, Canada Inc., Burlington, Canada) supplemented with 50 mM 

glucose and incubated overnight on an orbital shaker at 37oC. The cell culture was then 

centrifuged (6000 x g for 5 min at 23oC) and the pellet washed with sterile phosphate-

buffered saline (PBS), pH 7.4. The inoculum suspension was prepared by resuspending 

the washed pellet in YNB broth supplemented with 100 mM glucose to an absorbance of 

0.250 ± 0.05 at 520 nm, using an iMark™ spectrophotometer (Bio-Rad Laboratories, 

Hercules, CA,USA), roughly equivalent to 1 x 107 cells/ml. The standardized C. albicans 

inoculum (200 ml) was dispensed into presterilized, polystyrene, flat-bottomed 96-well 

microtitre plates; individual wells contained either PMMA or hydroxyapatite 

preconditioned protein discs. The discs were incubated for 5, 30, 90 and 1440 min at 

37oC, with gentle agitation. At each time interval, non-adherent cells were removed from 

the discs by immersing the samples in distilled PBS as a wash step. The samples were 

immediately prepared for scanning electron microscopy (SEM) analysis. 
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Scanning electron microscopy 

Samples were fixed with 2% glutaraldehyde for 16 h and then dehydrated in an ethanol 

series (25%, 50%, 75% and 100%, with three replicates, for 15 min each). Dehydrated 

samples were critical point-dried (SamDri-PVT-3BW Critical Point Drier, Tousionis, 

Rockville, MD, USA), secured on 12 mm SEM carbon adhesive tabs and platinum-

coated (Denton Vacuum Desk II, Denton Vacuum Inc., Moorestown, NJ, USA). Each 

sample was analyzed under a scanning electron microscope (LEO 1540XB Field 

Emission SEM, Carl Zeiss SMT AG, Oberkochen, Germany) at detector beam energy of 

3 keV (Power et al., 2009). Microbial counts were obtained for each group at each 

sampling time interval, by taking SEM micrographs of five randomly chosen regions on 

each sample. A grid system of 24 000 mm2 was applied on each micrograph (grid system 

contained 15 40 mm2 areas), and the number of cells within each 40 x 40 mm square was 

counted. This method allowed us to obtain an average number of cells per 24 000 mm2 

area for each sample. Two independent experiments were carried out. 

 

Statistical analysis 

Statistical analysis was performed using the SAS/LAB package (SAS v 9.0; SAS 

Institute, Cary, NC, USA) with a significance limit fixed at 1%. A negative binomial 

(NB) statistical model was used to compare the differences in microbial counts between 

substrates, protein treatments and across time. Post hoc comparisons were performed 

using the Tukey–Kramer test; p<0.01 was considered statistically significant. 

 

3.3 Results 
Microbial counts indicated that H5-coated PMMA surfaces had significantly lower 

numbers of cells compared to albumin-coated PMMA surfaces at 30, 90 and 1440 min 

(p<0.0001) (Figure 1A). Similarly, compared to albumin-coated surfaces, H5-coated 

hydroxyapatite had significantly fewer cells at 90 and 1440 min (p<0.0001) (Figure 1B). 

When comparing differences across time, H5-coated PMMA had a significant decrease in 

the number of cells at 90 and 1440 min (p<0.0001) (Figure 1A,), while the number of 

cells colonizing H5-coated hydroxyapatite decreased significantly at 30, 90 and 1440 min 

(p<0.0001) (Figure 1B). In Figure 1, upper case letters for albumin and lower case letters 
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Figure 3.1 Microbial counts of cells on albumin and H5-coated PMMA (A) and 
hydroxyapatite (B), following 5, 30, 90 and 1440 min exposure periods. *Significant 
differences between albumin and H5-coated-surfaces; significant differences across time 
are denoted by letters (upper case, albumin; lower case, H5) 
 

for H5 represent this significant difference across time. 

In contrast to albumin-coated PMMA and hydroxyapatite, C. albicans exposure to 

the H5-protein integument results in a time-dependent decrease in the number of cells on 

both surfaces, with colonization being inhibited most significantly at 1440 min. This 

time-dependent effect of adsorbed H5 on C. albicans colonization is illustrated through a 

series of SEM micrographs which illustrate C. albicans colonizing albumin and H5-

coated PMMA surfaces at 5 min (Figure 2A, B), 30min (Figure 2C, D), 90 min (Figure 

2E, F) and 1440 min (Figure 2G, H). Similarly, Figure 3 illustrates C. albicans colonizing 

albumin and H5-coated hydroxyapatite at 5 min (Figure 3A, B), 30 min (Figure 3C, D), 

90 min (Figure 3E, F) and 1440 min (Figure 3G, H). 

In addition, C. albicans colonizing albumin-coated PMMA exhibited yeast 

morphology (Figure 4A), while C. albicans formed dense networks of hyphae across the 

albumin-coated hydroxyapatite surface (Figure 4B) at the 1440 min sampling interval. 
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Figure 3.2 SEM micrographs of C. albicans colonizing albumin and H5-coated PMMA 
surfaces at 5 min (A, B), 30 min (C, D), 90 min (E, F) and 1440 min (G, H), respectively. 
Scale bar = 10 μm  
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Figure 3.3 SEM images of C. albicans colonizing albumin and H5-coated hydroxyapatite 
surfaces at 5 min (A, B), 30 min (C, D), 90 min (E, F) and 1440 min (G, H), respectively. 
Scale bar = 10 μm 
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Figure 3.4 SEM images indicate that C. albicans colonizing albumin-coated PMMA 
exhibit yeast morphology (A) at the 1440 min sampling interval, while C. albicans 
formed dense networks of filaments across the albumin-coated hydroxyapatite surface 
(B) at the 1440 min sampling interval. Actively dividing cells commonly occur on both 
surfaces (arrows). Scale bar = 2 μm 
 

3.4 Discussion 
Microbial adhesion to hard oral surfaces (e.g. dentures and enamel) is mediated by 

specific salivary protein receptors in the AP, which therefore have a significant effect on 

the adhesion process of pathogenic microbial communities responsible for initiating oral 
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diseases (Buergers et al., 2010). For this study, an in vitro model system was developed, 

which initially involved developing either an H5 or a serum albumin protein integument 

on hydroxyapatite and PMMA surfaces, and then inoculating the system with C. 

albicans. Serum albumin was the control treatment, because it is a salivary protein 

identified within the in vivo pellicle (Siqueira et al., 2007); it serves as a receptor for 

initial microbial adhesion in the oral cavity (Kohavi et al., 1995) but has not been found 

to promote or inhibit the microbial adhesion process (Buergers et al., 2010). 

Previous studies indicated that fluid-phase H5 exhibits antifungal effects on the 

planktonic phase of C. albicans (Gyurko et al., 2000; Pusateri et al., 2009) and on C. 

albicans biofilms (Konopka et al., 2010). Interestingly, our results demonstrate that H5 

adsorbed to PMMA and hydroxyapatite inhibits the colonization of C. albicans on these 

surfaces (Figure 1A, B). Adhesion of individual C. albicans cells to oral surfaces must 

occur for successful subsequent colonization and initiation of candidiasis (Göcke et al., 

2002). We demonstrated that H5 adsorbed as protein integument on PMMA and 

hydroxyapatite successfully reduces C. albicans colonization, which would therefore 

prevent further sequestration and growth of microbial communities. 

The decrease in C. albicans cells on both tested surfaces prior to adsorption to H5 

suggests that this protein decreases C. albicans colonization compared to albumin (Figure 

1A, B). Although previous studies have found that the uptake of H5 by C. albicans and 

its killing activity are time-dependent, with the killing efficiency of H5 becoming more 

pronounced with longer periods of exposure (Gyurko et al., 2000), our results indicate 

that the time-dependent effect of H5 on C. albicans adherence exists when this protein is 

adsorbed to PMMA and hydroxyapatite surfaces. 

In addition, serum albumin, adhered as a conditioning film to the hydroxyapatite 

surface, retains its ability to induce C. albicans to undergo morphological change to its 

filamentous, virulent form following 1440 min exposure to the protein-conditioning layer 

(Figure 4). Serum albumin, a major component of the gingival crevicular fluid, has been 

previously found to promote the shifting from yeast to the filamentous form of C. 

albicans via multiple signaling pathways on serum-coated metallic and non-metallic 

materials (Frade and Arthington-Skaggs, 2011). However, the specific mechanisms 

regulating hyphae development remain unclear. 
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Since patients with periodontal disease demonstrate elevated amounts of albumin in 

gingival crevicular fluid (Curtis et al., 1990), the present data suggest that the amount of 

albumin in the acquired pellicle may also modulate the virulence of the pathogenic 

fungus C. albicans. 

Although the denture surface is known to be the major reservoir for C. albicans 

(Ramage et al., 2006), the tooth surface may also function as an important reservoir for 

candidal reinfection, since hydroxyapatite surfaces were much more heavily colonized by 

virulent C. albicans compared to PMMA (Figure 4). Serum albumin’s ability to stimulate 

the morphological change of C. albicans may be dependent on the surface available for 

protein adsorption. It is very possible that a specific conformation of serum albumin may 

be required to induce C. albicans to change into its virulent, hyphal morphology. For 

example, H5 candidacidal potency is suggested to be dependent on C-terminal exposure, 

the tendency of H5 to adopt a-helical conformation and the ability of the protein to bind 

to the glycosylated extracellular receptors of the cell, thus allowing it to exhibit its 

anticandidal activity (Tsai et al., 1997). Similarly, serum albumin may bind to 

hydroxyapatite in a conformation that maintains the exposure of its functional domain 

responsible for the induction of filamentous development. However, this suggestion 

needs to be evaluated in the future. The present results demonstrate that albumin, adhered 

as a conditioning film on hydroxyapatite, retains its ability to induce C. albicans to 

undergo morphological change into its filamentous, virulent form following 1440 min 

incubation. Since the cells on albumin-coated PMMA did not develop extensive hyphal 

networks, the morphological plasticity of C. albicans may be influenced by the surface 

properties available in the oral cavity for salivary proteins. 

Gaining a comprehensive understanding of the key factors that modulate the 

earliest stages of C. albicans adherence and colonization on oral surfaces, such as PMMA 

and hydroxyapatite, is crucial to effectively develop a new therapeutic approach to 

preventing or even treating oral candidiasis. One possible therapeutic approach is to load 

antimicrobial peptides (e.g. H5) via adsorption or chemical crosslink to the PMMA 

denture surface prior to insertion into the oral cavity (Zasloff, 2002). For instance, 

modifying the PMMA surface by co-polymerization of methyl methacrylic acid to 

introduce carboxyl groups provides double the adsorption of H5 per surface area 
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(Edgerton et al., 1995). Utilizing H5 as a novel treatment technique for oral candidiasis 

could be an ideal option, since histatins exhibit no or low haemolytic activity to human 

erythrocytes (Wei and Bobek, 2004) and have low tendencies to induce resistant strains 

in vitro (Zasloff, 2002). Future studies should investigate whether similar effects of 

adhered H5 and albumin on C. albicans occur in a multi-species biofilm model, to gain a 

more comprehensive understanding of in vivo conditions. 

In conclusion, H5 adsorbed as a protein integument on PMMA and 

hydroxyapatite effectively inhibits C. albicans colonization. In addition, serum albumin 

adhered as a protein integument retains its effect at inducing C. albicans hyphal 

development. This novel insight reinforces the idea of utilizing antimicrobial salivary 

proteins such as H5 as a treatment option for preventing the development of pathogenic 

fungal biofilms, which are resistant to current treatments. 
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CHAPTER 4 
 

Adhesion forces between histatin 5 and hydroxyapatite measured by atomic force 
microscopy 

 
4.1 Introduction  
Histatins are a group of low-molecular-weight salivary proteins possessing cationic 

properties that are secreted by the major and minor salivary glands (Oppenheim et al., 

1986; Siqueira et al., 2008). Histatins possess a high affinity to hydroxyapatite (HA), 

resulting in their selective adherence to the enamel surface (Hay, 1975; Oppenheim et al., 

1986; Oppenheim et al., 1988a; Jensen et al., 1992). As a result of being among the first 

salivary proteins to adhere to enamel, they are among the proteins that are responsible for 

initiating the development of the acquired enamel pellicle (AEP), a protein integument 

formed in vivo as a result of selective adsorption of salivary proteins to the enamel 

surface in the oral cavity (Dawes et al., 1963).  
It is important to develop an understanding of protein-surface interactions within 

the oral cavity because many salivary proteins have important biological functions. 

Understanding the adsorption of histatins, particularly histatin 5 (H5) is particularly 

important because H5 exhibits an antifungal effect against Candida albicans, an 

opportunistic yeast that induces oral candidiasis (Pollock et al., 1984; Oppenheim et al., 

1988; Gyurko et al., 2001). In addition, understanding the adhesive properties of proteins 

with high affinity for HA (i.e., adhesion forces), would facilitate the design of therapeutic 

treatments involving natural or synthetic proteins. Although histatins have been found to 

have high affinity to HA (Oppenheim et al., 1988b; Jensen et al., 1992), the exact 

strength of adhesion forces between H5 and HA has not yet been established.  

Atomic force microscopy (AFM) was originally used as a tool for imaging 

surfaces at nanometer scales. This was achieved by placing a sharp probe attached to a 

cantilever in contact with a sample surface and measuring the minute deflections of the 

cantilever as the probe is moved laterally along the surface (Binnig et al., 1986). Forces 

between the tip and the surface of the sample are responsible for causing the cantilever to 

deflect, and a detector measures the cantilever deflection as the tip scans the sample. A 

contact AFM image is typically obtained of the surface topography by mapping the 
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vertical displacement of the sample required to maintain a constant cantilever deflection 

(Muller et al., 1997). AFM is also able to monitor submolecular details of proteins under 

their physiological conditions (Hoh et al., 1991; Karrasch et al., 1993; Muller et al., 

1995). The atomic fore microscope has also been used to study adsorption dynamics of 

proteins on surfaces including mica and polydimethylsiloxane (PDMS) (Dufrene, 2003; 

Toscano and Santore, 2006; Holland and Marchant, 2000; Toworfe et al., 2004), and to 

determine the conformational change of proteins upon their absorption to a surface 

(Agnihotri and Siedlecki, 2004).  

The versatility of AFM can be attributed to the fact that probes can be functionalized to 

enable researchers to probe specific interactions between two surfaces.  

Recently, AFM has been used to measure the adhesion force of a sample, 

commonly known as the pull-off force needed to separate the AFM tip from the surface 

of the sample of interest (Pelin et al., 2012). The fundamental factors that control 

adhesion include adhesive forces between a sample and substrate of interest (Bowen et 

al., 1998). Adhesion measurements are typically obtained from the force required to 

detach the AFM tip from the surface by quantifying the difference in approach and retract 

curves at the point when the two surfaces are separated (Fang et al., 2000). This approach 

of measuring adhesion forces was used to analyze adhesion between an AFM cantilever 

and sulfate-reducing bacteria (Fang et al., 2000), and other bacteria (Vadillo-Rodriguez 

2003; 2004; 2006). AFM can therefore be used as an important tool for developing the 

fundamental knowledge of adhesion forces of salivary proteins, e.g., H5, to the enamel 

surface and consequently provide a better understanding on acquired enamel pellicle 

formation.  

The objective of this study was to determine the adhesion forces between H5 and 

HA. This would provide fundamental knowledge of molecular forces, which can be used 

in the development of therapeutic agents for oral diseases. In addition, the novel 

methodology that was developed for determining adhesion forces between H5 and HA 

can be utilized by researchers to determine adhesion forces involved in the adhesion of a 

variety of other proteins to various substrates of interest. 
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4.2 Methods  

Biotinylation of Proteins  

H5 (protein purity > 95%, GenScript, Piscataway, NJ, USA) and albumin (Fisher 

Scientific, Rochester, NY, USA) were individually resuspended in water (pH=7.4, 

protein concentration of 100 µM). EZ-Link Sulfo-NHS-SS-Biotin (Pierce Biotechnology, 

Rockford, IL, USA) was equilibrated to room temperature, and dissolved in distilled 

water to obtain a 10 mM final concentration. Biotin was added to each protein solution at 

20-fold molar excess and the reaction was incubated at room temperature for 60 min. To 

remove excess biotin, the solution was added to a desalting column (3 kDa; Nanosep®), 

Pall Corporation, NY, USA and centrifuged at 4,000 x g for 10 min. The remaining liquid 

at the surface was collected and the flow-through fluid in the column was discarded. This 

was repeated for a total of three times to obtain a purified biotinylated protein sample, 

which was then immediately placed on ice.  

The HABA assay (4´-hydroxyazobenzene-2-carboxylic acid; Pierce 

Biotechnology, Rockford, IL, USA) was performed to quantify biotinylation, the level of 

biotin incorporation, and ultimately determine the molar ratio of biotin to protein. The 

biotinylated protein sample (either H5 or albumin) was added to a HABA/Avidin mixture 

and the absorbance was read at 500 nm using a Bio-Rad iMark™ spectrophotometer 

(Bio-Rad Laboratories Inc, Hercules, CA, USA). In order to calculate the biotin:protein 

ratio, the absorbance readings of HABA/Avidin and biotinylated protein/HABA/Avidin, 

along with the molecular weight and concentration of each protein, was applied to the 

automatic HABA Calculator (Thermo Scientific, Pierce Biotechnology). The Beer-

Lambert Law was applied with the known variables to provide an estimate of moles of 

biotin per moles of protein.  

 

Cantilever system  

To obtain adhesion force measurements between our protein of interest and the HA 

surface, we designed a cantilever system consisting of a Si3N4 AFM cantilever (NP-S, 

Veeco Instruments, NY, USA) with an attached silica microsphere, in turn containing 

biotinylated protein. To achieve this, ~5 µm-diameter silica microspheres pre-conjugated 

with streptavidin of (ProActive® Microspheres, Bangs Laboratories, IN, USA) were 
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acclimatized to room temperature prior to use. A suspension of 0.5 mg/mL of 

microspheres was washed by vortexing for 20 sec, centrifuging at 1,200 xg for 15 min, 

and re-suspending in a 10x volume of PBS. The supernatant was discarded and the wash 

step was repeated three times. The pellet obtained (containing microspheres) was re-

suspended in a 100 µM solution of either H5 or albumin biotinylated protein. This was 

incubated at room temperature (22°C) for 30 min on a shaker under gentle mixing. 

Following incubation, the particles were washed once again, as described earlier. The 

microspheres were then dried for 2 h on silica wafers. The bond formation between biotin 

and avidin is rapid and once formed is unaffected by changes in pH, denaturing agents 

and organic solvents (Green, 1965; Green, 1971; Green, 1975). 

 Once dry, microspheres were immediately attached individually to the AFM 

cantilever using Araldite 10-min two-component epoxy resin (Araldite®, Huntsman 

Advanced Materials, Switzerland) as described in previous studies (Ong and Sokolov, 

2007; Lee et al., 2009; Zhang et al., 2009). For each cantilever system, the attachment of 

each bead to the cantilever was confirmed using optical microscopy (400x 

magnification).  

 In addition, six cantilever systems consisting of the biotinylated attached 

microspheres were sacrificed for SEM microscopy (and not re-used for AFM 

measurements). They were secured on 12-mm SEM carbon adhesive tabs, and platinum 

coated (Denton Vacuum Desk II, Denton Vacuum Inc, Moorestown, NJ, USA). The 

cantilever system was then observed under scanning electron microscopy (SEM; LEO 

1540XB Field Emission SEM, Carl Zeiss SMT AG, Oberkochen, Germany) at detector 

beam energy of 3 keV to confirm the microspheres were successfully attached to the 

AFM cantilever and that the Araldite was not covering the microspheres.  

Optical microscopy was successful in confirming the attachment of each 

microsphere to each cantilever, and confirmed that the microsphere remained intact even 

following adhesion measurements. After examining several cantilever systems under 

SEM, micrographs reveal successful attachment of the microsphere to the cantilever via 

Araldite (Figure 4.1A), and the fact that Araldite did not coat the surface of the 

microsphere was also confirmed (Figure 4.1B).  
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Figure 4.1 SEM micrographs of AFM cantilever with streptavidin pre-coated silica 
microsphere adhered successfully using Araldite (A). Closer magnification reveals that 
the surface of the microsphere is not coated in Araldite (B). 
 

Substrate Preparation  

HA discs of 5 mm diameter and 2 mm thickness (Hitemco Medical, Old Bethpage, 

NY, USA) were used as the substrate. Their surfaces were polished using aluminum 

oxide papers (320, 400, and 600 – grit) to standardize surface roughness (SR), aiming to 

mimic the natural enamel surface in the oral cavity (Gomes et al., 2011; Botta et al., 

2009). A profilometer (Surface Roughness Tester SJ-210, Mitutoyo; Mississauga, ON, 

Canada), accurate to 0.01 mm with a total measurement length of 3.2 mm x 0.5 mm, was 

used to measure surface roughness. Discs were then cleaned by sonication (Digital 

Ultrasonic Cleaner UD100SH, Kwun Wah International Ltd, Wanchai, HK, China) in 
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distilled water, three times, for 20 min each to obtain clean discs for adhesion 

measurements.  

 

Adhesion Measurements  

A Multimode atomic force microscope (AFM) with Nanoscope IIIa controller (Veeco 

Instruments, Santa Barbara, CA, USA) was used to measure the adhesion force (force-

distance measurements) between the cantilevers containing protein-functionalized silica 

microspheres and the HA surface. All measurements were performed within a fluid cell 

containing distilled water. The imaging was performed in tapping mode using Si3N4 

AFM cantilever (NP-S, Veeco Instruments, Plainview, NY, USA), while the adhesion 

forces were measured in AFM contact mode using the cantilever system that was created, 

described earlier. Following each adhesion measurement, the cantilever system was 

examined using optical microscopy to confirm the bead remained attached to the 

cantilever.  

Adhesion measurements were obtained for two treatments, either biotinylated H5 

or albumin microspheres and the HA surface. The control that was used was a 

microsphere pre-conjugated with streptavidin (containing no protein of interest). 

Adhesion measurements were made for each treatment, along with the control, on 3 HA 

discs. A new cantilever system was used for each measurement. For each HA disc, 

adhesion measurements were obtained on three different areas, each subdivided into a 

matrix of 32 × 32 points, for a total of ~1000 force-distance curves for each area; 

therefore ~3000 force-distance curves for HA triplicates (per treatment). The triplicates 

for each treatment were plotted as histograms, which depicted the range of adhesive 

forces (nN) measured between H5 functionalized AFM tip and the HA surface or 

albumin functionalized AFM tip and the HA surface.  

In order to obtain the histograms of adhesion forces, adhesion forces were first 

obtained by mounting the HA disc in the AFM, placing the cantilever system into the 

fluid cell, positioning the laser to obtain a strong signal, doing a coarse manual approach 

of AFM cantilever system to the HA surface, followed by an auto approach to the 

sample, activating the AFM to start a series of approach-retraction cycles.  
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A typical force-distance curve describing a single approach-retract cycle with the 

H5 functionalized AFM cantilever and HA surface is illustrated in Figure 4.2. As the 

AFM tip approaches the sample (Figure 4.2, approach curve), the sample height (height 

between the cantilever tip and HA surface) decreases. The initial contact between the 

AFM tip and the surface results in the attraction of the tip towards the surface via van der 

Waals forces. When the AFM tip makes contact with the HA surface (with a constant 

force), there is an increase in force, resulting in cantilever deflection (due to stiffness of 

the surface). During the retraction phase, the AFM tip retracts and tries to break contact 

with the surface (Figure 4.2, retraction curve). Adhesion forces between the sample and 

AFM tip attempt to prevent the tip retraction, but the tip eventually overcomes the 

adhesive forces, withdraws and loses contact with the surface (Shahin et al., 2005). The 

adhesion force measured is ultimately the force required to detach the AFM tip from the 

surface by quantifying the difference in approach and retract curves at the point when the 

two surfaces are separated.  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.2 A typical force-distance curve, between H5 functionalized AFM cantilever 
and HA surface, that was used to calculate the adhesion force between H5 and the HA 
surface. The blue line represents the approach of AFM cantilever to the surface, while the 
red points represent the retraction of the AFM cantilever from the surface.  
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Once all adhesion measurements were obtained, each force curve was examined 

with IGOR Pro macros (Wavemetrics, Tigard, OR, USA), and error force-distance curves 

were removed. When the adhesion forces were exported to Excel (Microsoft Excel 2008 

for Mac, Version 12.3.4), adhesion forces that were equal or less than zero were removed 

from the data set. Each adhesion force was then multiplied by the spring constant of the 

corresponding cantilever used to obtain that adhesive force. AFM cantilever spring 

constant, specific to each cantilever used, was obtained using the Thermal Noise Method. 

This involved mounting a flat substrate to the AFM (we used silica wafer), mounting the 

AFM cantilever system into the AFM, performing the approach and recording the 

deflection data while the force curves are being obtained. Once one cycle is obtained, the 

AFM cantilever system is withdrawn from the substrate. The data analysis involved a 

series of steps including measuring the slope of contact portion of force curve and fitting 

a Lorentzian to the peak, and applying the thermal calibration formula to obtain the 

spring constant.  

After the raw adhesion measurements were corrected with the corresponding 

cantilever spring constant, bins (ranges) of adhesion forces were created in Excel, and the 

frequency of data (adhesion measurements) that fell in each bin was obtained. Adhesion 

measurements were then standardized based on % counts, by dividing each frequency 

(for each bin) by the total number of adhesion measurements obtained. Only adhesion 

forces greater than zero were taken into account. Standardizing the adhesion 

measurements (to obtain % counts) allowed us to combine triplicates for each treatment 

to form another set of histograms that included all measurements (~9,000 force curves 

per treatment).  
 

4.3 Results and Discussion  
In terms of efficiency of biotinylation, results from the HABA assay indicate the 

mole:mole ratio of biotin:protein is 0.73 for H5 and 0.71 for albumin. Thus, it can be 

concluded that biotin was successfully attached to the protein of interest, resulting in 

biotinylated H5 and biotinylated albumin. Due to the strong avidin-biotin affinity (Green, 

1965; Green et al., 1971; Green 1975) we assumed biotinylated proteins were 

successfully attached to streptavidin pre-conjugated, silica microspheres.  
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In terms of surface topography of HA, SEM and AFM micrographs, in 

combination with an AFM three-dimensional image of the HA surface, reveal a visually 

smooth surface for adhesion measurements (Figure 4.3A, B, C, respectively). In addition, 

a profilometer (Surface Roughness Tester SJ-210, Mitutoyo; Mississauga, ON, CA) 

indicated an average surface roughness of 0.040 ± 0.004 (μm), closely mimicking the 

natural enamel surfaces within the oral cavity determined to be 0.046 ± 0.0107 (Botta et 

al., 2009).  

A collection of force-distance curves (~3,000/replicate) was used to formulate 

histograms that illustrate adhesion force between the HA surface and control, albumin, 

and H5 (Figure 4.4A, B, C, respectively). Although Figure 4 indicates variability between 

replicates for each treatment, when replicates are combined to formulate one histogram 

(~9,000 force curves), representing the distribution of adhesion forces, a clear difference 

in histogram distribution can be observed (Figure 4.5). According to the distribution of 

the histograms, H5 exhibits stronger adhesion forces to the HA surface compared to 

albumin and the control (Figure 4.5). It can be concluded that the majority of force-

distance curves showing non-zero adhesion (90%) are >0.570 nN for the control, >0.282 

nN for albumin, and >1.830 nN for H5. Therefore, based on our results, it can be 

determined that the adhesion force between H5 and HA is stronger than the adhesion 

between microsphere control and albumin protein control to HA. The histograms were 

compared in this format because the histograms demonstrate a non-Gaussian distribution 

and the data sets all demonstrated a high standard deviation. Therefore, the 90% 

percentile method was used to quantify the histograms for comparison purposes. 

Comparing the histograms in this way allowed us to determine that the majority of 

adhesion measurements (90%) fall above a certain value. In addition, since all of the data 

was standardized (by %counts, as described earlier), histograms were compared with one 

another directly.  
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Figure 4.3 The surface topography of the HA disc viewed using SEM, AFM, and AFM 
three-dimensional surface representation (A, B, C, respectively), reveals a smooth surface 
for adhesion measurements.  
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Figure 4.4 Standardized histogram representation of adhesion forces between HA and 
two treatments albumin, and H5, along with the control (A, B, C, respectively). Each 
treatment consisted of 3 HA discs, with each disc being sampled in three separate 
locations and averaged together to ultimately represent one bar (~3,000 force-distance 
curves). Results show variability between samples, however, adhesion forces between 
HA and H5 (C) appear to be stronger compared to the control and albumin (A, B).   
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Figure 4.5 Standardized histogram representation of adhesion forces between HA and 
two treatments albumin, and H5, along with the control. Each bar is a combination of 
triplicates for each treatment, thus representing an average adhesion force that 
incorporates ~9,000 force-distance curves. These results indicate H5 demonstrates 
stronger adhesion forces to HA compared to the albumin treatment, and the control.   
 

It is important to note that due to the high variability between replicates for each 

treatment (Figure 4.4A, B, C), the experiment should be repeated to obtain more data 

points in order to see if the results show the same trend.    

Gaining an understanding of adhesion forces of salivary proteins to enamel is 

important to develop a fundamental knowledge of the strength of these forces. The 

experimental design of this study provided insight as to the adhesion forces of H5 and 

albumin to HA. Figure 5 indicates that the adhesion force between H5 and HA is stronger 

compared to the microsphere and albumin controls. These results suggest proteins with 

high affinity to HA (i.e., H5) have strong molecular adhesive forces to HA. On the other 

hand, albumin is a salivary protein that does not exhibit high affinity for HA (Carlen et 

al., 1998), and thus does not demonstrate adhesion forces to HA as large as does H5 

(Figure 5).  

Proteins with high affinity to HA (i.e, histatins) are able to maintain their intact 

structure by binding to HA, thus resisting proteolytic degradation within the oral cavity 

(McDonald et al., 2010). Since we found that a protein’s affinity to HA likely coincides 

with the strength of its molecular-scale adhesion properties, investigating how to modify 

or enhance the adhesive forces of salivary proteins (natural or synthetic) to inhibit their 
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degradation in the oral cavity could potentially be used to develop novel therapeutic 

strategies that focus on the use of salivary proteins.  

For instance, several studies indicate that H5 has potent antifungal activity against 

the pathogenic C. albicans, which is the primary pathogen responsible for initiating oral 

candidiasis (Gyurko et al., 2000; Pusateri et al., 2009). In fact, it has been recently 

discovered that H5 adhered as a pellicle on a HA surface retains its antifungal effect 

against C. albiancs (Vukosavljevic et al., 2012). Future studies could investigate how to 

increase the adhesive properties of natural or synthetically formulated proteins that have 

antimicrobial effects against pathogenic oral microbiota. If a protein that exhibits 

antimicrobial properties can be developed with stronger adhesive properties, it can 

potentially adhere to the enamel surface and exhibit a stronger, more potent therapeutic 

effect.  

The overall adsorption behaviour of a protein to a substrate is a complex process 

modulated by a number of parameters, including structural stability/arrangement of the 

protein, charge distribution at the interfacial layer, hydrophobicity of the substrate 

surface, protein-surface polarity, solution pH, ionic strength (Norde and Luklema, 1979; 

Haynes and Norde, 1994). Therefore, being able to effectively control the process of 

adsorption of proteins to the enamel surface requires an understanding of the driving 

adhesion forces for adsorption. Due to these several parameters that control protein 

adsorption, it becomes a challenge to be able to predict the behaviour of how proteins 

interact with surfaces within the oral cavity under in vivo conditions.  

Adhesion forces between the protein of interest and a substrate can be used as an 

important quantitative measurement to evaluate the adsorption of proteins to the 

respective surface. It is important to develop an understanding of adhesion forces of 

physiologically important salivary proteins (i.e., H5, statherin, aPRP) to various oral 

surfaces. Once this knowledge is obtained, studies should be designed to understand 

factors that control the strength of these adhesive forces to surfaces within the oral cavity 

(outlined earlier).  

In conclusion, this study provides fundamental knowledge of adhesion forces 

between H5 and HA, knowledge that can possibly be used in the future to develop stable 

(proteinase-resistant) synthetic peptides for therapeutic use against various oral diseases 
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(i.e., dental caries, periodontal disease, candidiasis). In addition, this study demonstrates 

an experimental design for the measurement of adhesion forces between a protein of 

interest and a substrate, methodology that can be applied to understand adsorption 

dynamics of proteins in future studies.  
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CHAPTER 5 
 
5.1 General Conclusion  
With the increase in prevalence of dental erosion (Truin et al., 2005), and development of 

resistant strains of C. albicans to current treatment methods of oral candidiasis (Tsai et 

al., 1997), the need for novel therapeutic treatments is becoming increasingly important. 

Technological advancements of laboratory instruments in recent years now enable 

scientists to gain micro-scale imaging of samples of interest (e.g., scanning electron 

microscopy) and allow for measurement of molecular forces between samples (e.g., 

atomic force microscopy). Researchers can now apply these technological advancements 

to the field of salivary biology to better understand how to develop effective treatment 

options for oral diseases.   

Within the complex salivary fluids lies more than 2290 salivary proteins, 130 of 

which are involved in the formation of the acquired enamel pellicle (Siqueira et al. 2007). 

We now understand that the physical properties of the AEP along with its protein 

composition can provide protection against enamel demineralization diseases such as 

dental erosion and/or dental caries. Gaining an in-depth understanding of the details of 

how the AEP exhibits anti-erosive properties is the first step for researchers to take in 

order to be able to effectively utilize/manipulate the AEP to modulate dental erosion.  

In addition to the therapeutic potential of the AEP against dental erosion, an 

individual salivary protein that is involved in AEP formation, H5, demonstrates potent 

antifungal effects on C. albicans, which is responsible for development of oral 

candidiasis (Pusateri et al., 2009; Konopka et al., 2010). We demonstrated for the first 

time that H5 retains its antifungal effect even when it is adhered to both hydroxyapatite 

and PMMA as a mono-protein integument. This knowledge can be used in an attempt to 

modify the AEP in order to increase its therapeutic effect against oral candidiasis.  

It is also important to gain a strong understanding of the molecular forces (i.e., 

adhesion forces) that are involved in the adhesion of salivary proteins to enamel or dental 

resin. This knowledge would allow researchers to manipulate and alter adhesion forces of 

proteins with physiologically important characteristics. For instance, if the adhesion 

forces of H5 to enamel were to be strengthened, more H5 could potentially adhere to the 
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surface creating a protein layer that would be more effective at preventing the 

development of oral candidiasis. In addition, the knowledge of how to measure adhesive 

forces between proteins of interest to clinically important oral surfaces can be used in the 

development of synthetic proteins with therapeutic potential. For instance, StN21 is 

synthetic 21-amino acid peptide identical to the N-terminus of statherin, which was 

shown to be a stable and potent peptide with potential as a therapeutic agent for the 

treatment of dental caries and dental erosion (Krosic et al., 2007). Once a protein with 

therapeutic potential is identified or designed, manipulating the protein or external 

parameters to strengthen adhesion forces between the protein and substrate, could 

ultimately allow for more physiologically important protein molecules to adhere to the 

surface and prevent their potential proteolysis within the oral cavity. However, in order to 

strengthen such forces, they must first be measured effectively. The study in Chapter 4 

describes an effective AFM cantilever design to measure adhesion forces between the 

protein and substrate of interest.  

Chapter 5 is concluded with a published commentary article entitle “Salivary 

proteins as predictors and controls for oral health”, addressing how the composition of 

saliva and the AEP are strong candidates for a future proteomics-based diagnostic tool, 

along with potential of AEP, in particular as a target-specific therapeutic treatment 

option.  

 
 
5.2 Salivary proteins as predictors and controls for oral health: 

Introduction  
Periodontal disease (i.e., gingivitis, chronic periodontitis) and dental caries are the two 

most globally prevalent chronic oral pathologies that affect children, youth, adults, and 

elders (Featherstone 2000; Albandar 2002). In the United States, gingivitis affects 50% of 

adults, while chronic periodontitis affects an estimated 35% of the adult population 

(Albandar et al. 1999). In addition, each year over 300,000 patients worldwide are 

diagnosed with oral cancer (Parkin et al. 1988), representing 2–3% of all malignancies 

(Parkin et al. 2005). More than 90% of these cases are categorized as oral squamous cell 

carcinoma (SCC), with high metastasis rates, resulting in high patient mortality (Neville 
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and Day 2002; Parkin et al. 2005).  

Recent advances in dental research have enforced the need to gain a more 

comprehensive understanding of the prevention, treatment, and management of oral 

diseases. Oral health is an essential component of an individual’s well-being because it is 

very closely related to general health. Throughout the years, oral diseases have been 

defined as localized oral disturbances, but recent research suggests that they can be 

considered as general health distal determinants, acting as comorbidities and risk factors 

for many systemic diseases. For instance, the association between diabetes mellitus and 

periodontal disease can be considered to be bidirectional: diabetes can be a risk factor for 

the development of periodontitis (diabetic patients are 2.1–3.0 times more at risk of 

developing periodontitis; Salvi et al. 1997), while patients with periodontitis are much 

more likely to develop diabetes (Grossi and Genco 1998; Deshpande et al. 2010). 

Considering the interconnectedness of oral diseases and general health, we must gain a 

complete understanding of the pathophysiology of oral diseases within the dynamic, 

complex oral cavity in order to successfully develop potential treatments and accurate 

patient risk assessments for the prediction of these diseases (i.e., biomarkers).  

Periodontitis and dental caries are multi-factorial diseases primarily dependent on 

biofilm development. The oral cavity fosters an intricate microbial ecosystem, consisting 

of more than 700 bacterial species, many of which play an important role in maintaining 

oral health (Aas et al. 2005). However, when this ecosystem becomes disrupted, an 

increase in pathogenic microorganisms occurs, resulting in the initiation of disease. To 

initialize the growth of pathogenic biofilms and therefore the development of oral 

disease, microbial adhesion to the oral surface, such as dental enamel or denture resin, is 

the first and essential step to prevent cells from being removed by salivary flow 

(Whittaker et al. 1996; Jenkinson and Lamont 1997). Human saliva plays a significant 

role in controlling microbial adhesion since its proteinaceous components, after adsorbed 

to the oral surface, result in the formation of salivary protein pellicles. 

The acquired pellicle (AP) is a protein integument formed on the oral surface 

immediately after exposure of saliva to the oral environment. This protein film formed on 

the dental enamel is a result of specific physical bonds (i.e., hydrophobic, hydrogen 

bonding, ionic, and van der Waals bonds) between the substrata surface and the salivary 
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molecules (i.e., salivary proteins, peptides, carbohydrates, lipids; Dawes et al. 1963; 

Rolla et al. 1983; Siqueira et al. 2007a), resulting in the development of a 100–1000 nm 

protein film on the oral surface for microorganisms to adhere (Kuboki et al. 1987; 

Skjorland et al. 1995). The AP has important binding sites for oral microbiota; the 

protein-microbial adhesion process involves stero-specific interaction between receptors 

on the pellicles and adhesins on the microbial cell surfaces (Scannapieco et al. 1994).  

The AP may control the adhesion of pathogenic microbes to oral surfaces because 

some salivary pellicle proteins found in vivo can inhibit or enhance growth of oral 

microbiota (Scannapieco et al. 1994). For instance, the carboxylterminus of histatin 5 

demonstrates potent fungistatic and fungicidal effects against pathogenic fungi, C. 

albicans, at concentrations found in salivary secretions of healthy individuals (15–30 

μM) (Oppenheim et al. 1986; Xu et al. 1991). The antimicrobial affect of histatin 5 is due 

to its composition of multiple basic amino acid residues (arginine and lysine), allowing 

this salivary protein to disrupt the cell membrane by forming membrane pores, inducing 

membrane permeability (increased loss of K+ from cell) and resulting in cell death 

(Pollock et al. 1984).  

In contrast, the carboxyl-terminus of acidic proline-rich proteins (PRPs) promotes 

the attachment of various oral bacteria (i.e., Streptococcus and Actinomyces spp.) to the 

AEP, thus enhancing microbial colonization of the tooth surface (Gibbons and Hay 

1988). Specifically, the ProGln terminus of acidic PRPs is the preferred protein-binding 

site for microorganisms including S. gordonii (Gibbons et al. 

1991). Similarly to acidic PRPs, the carboxyl-terminus of statherin binds a variety of 

potentially invasive oral microbiota, including P. gingivalis (Amano et al. 1994) and C. 

albicans (Cannon et al. 1995). In addition, at concentrations of 100 μg/mL (healthy 

individuals), statherin is capable of inducing the transition from virulent, hyphael C. 

albicans to the cocci form (Leito et al. 2009). 

Recent studies have shown that pathogenic microorganisms have increased their 

resistance to natural host defenses and to antimicrobial treatments, resulting in more 

persistent and serious infections (Ramage et al. 2006; Tsang et al. 2007). This reinforces 

the need for the development of novel antimicrobial treatments that would inhibit and/or 

kill pathogenic microbes, preventing further colonization and development of oral 
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diseases. Since certain salivary proteins affect the growth of pathogenic oral microbes, 

their potential role in treatment/prevention of oral diseases must be considered. 

 

5.3 Challenges 
In order to evaluate the effectiveness of antimicrobial salivary proteins as a potential 

novel therapeutical approach for the combat of oral diseases, it is important to gain a 

comprehensive understanding of the inhibitory effects salivary proteins exhibit on 

pathogenic oral microbiota. 

One approach is to design larger-scale reaction systems that can allow us to 

control variables of interest (i.e., microbial consortia) and target specific questions about 

salivary protein-microbial interactions. Throughout the years, many in vitro model 

systems that model the oral cavity have been designed involving either flow cells 

(Christersson et al.1987; Larsen and Fiehn 1995; Guggenheim et al. 2001) and 

even chemostats (Herles et al. 1994; Bradshaw et al. 1996; Kinniment et al. 1996; 

Bowden 1999). However, some of these models yield contradictory results due to the 

selection of different parameters. Since the oral cavity is an extremely complex and 

dynamic system, many different components need to be considered when designing these 

systems, including multi-species biofilms, flow rate, temperature, pH, nutrient fluxes, and 

choice of proteins. Considering that human saliva consists of 2290 proteins (Loo et al. 

2010) and 130 proteins in the AP (Siqueira et al. 2007b) it becomes incredibly 

challenging to reproduce the in vivo environment. 

Another challenge when investigating the role of salivary proteins on oral 

biofilms is being able to view the world of a microbe on a small, micro-meter-scale. The 

advancements in high-resolution microscopy instruments have facilitated the 

investigation of microbial interactions (i.e., scanning electron microscopy, confocal 

microscopy, transmission electron microscopy). In addition to these tools, atomic force 

microscopy (AFM) has revolutionized the field of oral microbiology, enabling us to make 

a variety of protein/cell surface measurements on the atomic magnitude, directly in 

aqueous solution. Unlike conventional microscopy, AFM allows us to study adhesive 

(Lodish et al. 2004), mechanical (Greenleaf et al. 2007), electrostatic (Barkai et al. 2004), 

and immunochemical (Horber and Miles 2003) nanoscale-level properties. In order to 



www.manaraa.com

57 

successfully conduct these measurements, the AFM cantilevertip is typically 

functionalized with the protein/cell of interest and then used to probe a substrate (Zhang 

et al. 2009). However, the attachment of a pre-functionalized microsphere to the 

cantilever provides a much higher surface area when probing the substrate of interest, 

therefore greatly expanding the spectrum of adhesive interactions that can be obtained by 

a single cantilever (Ounkomol et al. 2009). For instance, streptavidin-coated 

microspheres can be attached to the AFM cantilever-tip (Figure. 1), and then reacted with 

biotinylated protein of interest to obtain an AFM functionalized, high-surface area probe 

(Zhang et al. 2009). This novel AFM-based force spectroscopy approach allows us to 

determine biophysical properties of cells and proteins, and also enables us to measure 

single cell-protein adhesion interactions: the first pathophysiological phenomenon that 

occurs prior to the development of biofilms on oral surfaces. By manipulating microbial-

protein interactions, we could essentially control oral disease development at the pellicle 

level, to prevent initial microbial adherence that leads to the development of oral 

diseases. 

In addition to the use of these microscopic techniques, the development of 

revolutionary mass spectrometry has allowed for the investigation of microbial-protein 

interactions using a proteomic approach, allowing us to understand how salivary proteins 

affect metabolic pathways inside a cell. Moreover, the analysis of the composition of the 

AP can lead to the establishment of biomarkers and therefore the prevention of oral 

diseases that can impact general health. These powerful microscopic and proteomic 

techniques should be combined when investigating protein-microbial interactions in order 

to obtain a representative and comprehensive understanding of microbial responses to 

antimicrobial agents. 

 

5.4 Salivary components as diagnostic tools for oral diseases 
The advancement of new technology and instrumentation will enable us to obtain reliable 

protein fingerprints based on saliva and/or the acquired pellicle. Combining this 

information with a patient’s oral microbiome can provide health care professionals with a 

comprehensive grasp of each patient’s pathophysiological state. 
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Figure 5.1 Scanning electron micrograph of AFM cantilever (a) and of streptavidin-
coated silica microsphere (~5 μm) adhered to AFM cantilever-tip via Araldite® epoxy 
glue (b). This functionalized microsphere can be coated with biotinylated proteins of 
interest to create an effective AFM probe for protein-adhesion measurements. 
 

A patient’s saliva sample could potentially have individual proteins or groups of 

proteins that are powerful biomarkers for oral diseases, including oral cancer. This is 

because saliva contains secretions from gingival crevicular fluid along with major and 

minor salivary glands, and its harvesting is much less invasive than blood sampling 

(Spielmann and Wong 2011; Edgar 1992; Siqueira and Dawes 2011). For example, it has 

been demonstrated that patients diagnosed with head and neck squamous cell carcinoma 

exhibit elevated levels of soluble CD44 (solCD44), compared to cancer-free patients 

(Franzmann et al. 2007). In addition, patients with early childhood caries exhibit higher 

levels of glycoprotein, while caries-free patients demonstrate elevated amounts of 

proline-rich protein in saliva (Bhalla et al. 2010). Therefore, analyzing the protein 

composition of a patient’s saliva could provide a protein profile for that patient, which 

could contain information as to which salivary proteins are upregulated/downregulated. 

This information could ultimately be compared to protein profiles of healthy patients, and 

those with different stages of various oral diseases, in order to accurately diagnose a 

patient (Blicharz et al. 2009). 

When considering oral diseases that initiate on hard surfaces (i.e., dental caries), 

sampling the acquired pellicle and obtaining a corresponding protein profile can likely be 
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much more important compared to saliva (Siqueira et al. 2007a; Siqueira and Oppenheim 

2009). Pellicle formation is a highly selective process since only a fraction of proteins 

found in human saliva (130/2290 proteins) are present in the in vivo AP on the dental 

enamel surface (Siqueira et al. 2007b). Since more than 51% of the recently identified 

pellicle proteins have unknown biological functions (Siqueira et al. 2007b), future 

research should focus on identifying the biological function of the remainder of the 

pellicle proteins. There may in fact be additional proteins, or protein complexes, that 

could be even stronger biomarkers/predictors for various oral diseases. 

In addition to obtaining saliva and AP protein patient profiles, sampling the oral 

microbial community (microbes adhered to oral surfaces) could produce a microbial 

patient profile, which could also be used as a biomarker for oral disease. Certain oral 

microbes adhered to the pellicle become more prevalent in patients suffering from certain 

oral diseases. For instance, patients exhibiting dental caries have an oral microbiota 

dominated by acidogenic and acid-tolerant gram-positive bacteria (i.e., Streptococcus and 

Lactobacilli spp.) (Marsh 2003). Meanwhile, patients with periodontal disease have an 

increased proportion of obligately anaerobic bacteria (i.e., gram-negative species) 

(Socransky et al. 1998). The presence/absence or quantity of certain individual microbes, 

or even microbial community composition, adhered to the pellicle can correspond to 

various stages of oral disease development. Health care professionals could employ 

techniques such as the Human Microbial Identification Microarray to determine the 

microbial community of the oral cavity, and determine ‘predictor’ microbes of oral 

diseases. 

 

5.5 Future direction 
Gaining a comprehensive understanding of interactions between oral microbiota and 

salivary antimicrobial proteins could potentially result in the development of novel 

treatments for a variety of oral pathologies. It would be very interesting if a potential 

treatments for oral diseases could be currently in the oral cavity in the form of salivary 

proteins. Therefore, biofilm-dependent oral diseases can be controlled at the pellicle level 

- the interface between pathogenic microbes and the solid oral surfaces. By controlling, 

or perhaps altering, the composition of the pellicle, we could potentially interfere the 
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adhesion process of the oral microbiota to oral surfaces. Therefore, the future of oral 

therapeutics should focus on the interaction between salivary proteins and 

microorganisms. 

In addition, the oral cavity contains biomarkers for oral diseases hidden within its 

complex oral fluids, AP integuments, and microbial consortia. The use of these proposed 

salivary biomarkers would promote health professionals to change their focus from 

disease diagnosis to monitoring and detecting oral disease at onset. Longitudinal studies 

should be conducted to better understand if such biomarkers could be used to identify 

progression of oral diseases. Ultimately, multiple biomarkers should be combined to 

achieve optimum specificity and sensitivity for detection of oral diseases. 

 

5.6 Conclusion 
Saliva is a complex fluid that possesses many important functions that relate directly to 

oral health. Accurate analysis of salivary components is a relatively new tool for 

assessing biological markers (hormones, immunoglobulins and antimicrobial proteins) 

for oral diseases as dental caries, periodontitis and oral candidiasis. The fingerprint 

profile of immunological compounds, such as immunoglobulin and other antimicrobial 

proteins, in saliva samples can be an indicator of the host immune system’s stress 

response to acute systemic disturbances, whereas assessment of the pellicle salivary 

constituents can identify susceptibility to local infections. Assessing proteins’ physical 

properties (i.e., adhesion forces) on different surfaces, cells or even to other proteins 

(protein-protein complexes) would assist us in understanding the role of salivary proteins 

and the pathophysiology of oral diseases. Subsequently, this new knowledge would help 

in developing innovative and effective therapeutic approaches to maximize the 

prevention of pathologic biofilm development.  

In conclusion, assessing and understanding salivary composition can be applied as 

a feasible and reliable tool for predicting and treating several oral infections, diagnosing 

systemic diseases and determining the state of patients’ immune systems. Therefore, 

collecting and analyzing saliva would not only help to better monitor and maintain the 

oral health of patients, but it could also significantly improve the health care system. 
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